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Introduction 

Implicit surfaces are two-dimensional, geometric shapes that exist in three dimensional space. 

They are defined according to a particular mathematical form. This article examines their 

definition, representation, and geometric properties. Related fields are discussed and practical 

methods are reviewed. 

As a two-dimensional analogy, imagine a drop of die spreading on a flat surface, changing color 

as it spreads. Tracing an infinitesimally thin range of color produces a contour. Extending to three 

dimensions, imagine a drop of dye, released under water, changing shape and color as it radiates 

outwards. In this case, an infinitesimally thin range of color produces a surface. 

 

Figure 1. A contour within oil and water. 

Reds 

Oranges 
Greens 

Purple contour 

Blues 



An implicit surface may be imagined as an infinitesimally thin band of some measurable quantity 

such as color, density, temperature, pressure, etc. The quantity varies within the volume but is 

constant along the surface. Thus, an implicit surface consists of those points in three-space that 

satisfy some particular requirement. Mathematically, the requirement is represented by a function 

f, whose argument is a three-dimensional point p (i.e., (x, y, z)). 

By definition, if f(p) = 0 then p is on the surface. f inherently characterizes a volume: those points 

for which f < 0 are on one side (nominally the ‘inside’) of the surface, those points for which f > 0 

are on the other side of the same surface. f does not explicitly describe the surface, but implies its 

existence. For many functions, f is proportional to the distance between p and the surface. This 

and other attributes encourage particular forms of geometric design. 

Implicit surfaces may differ in appearance, and always differ in expression, from the parametric 

surfaces more typical of computer aided design and computer graphics. For example, the 

parametric and implicit expressions for the unit circle, although describing identical shapes, 

greatly differ in their form and properties. In the equiangular parametric case, it is simple to 

compute a point on the circle at a given angle; this is not possible for the implicit representation, 

but it, unlike the parametric, inherently determines whether a point is inside, outside, or on the 

circle. 

Figure 2. Expressions for the unit circle. 
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Mathematical Foundations 

Analytic geometry is the branch of mathematics devoted to the relationship between geometry 

and the mathematical expression of the coordinates of points in space. When applied in three 

dimensions, it is called solid analytic geometry. If geometric relationships between points in three-

space are compared to corresponding mathematical (i.e., algebraic) relationships between the 

coordinates (x, y, and z) of the points, it is possible by algebraic proof to establish a geometric 

property. For example, the distance between the centers of two spheres can be compared 

algebraically with the sum of their radii, thereby predicting whether the spheres intersect 

geometrically. 

Analytic geometry has been applied to a wide variety of mathematical functions to establish their 

properties (especially tangency) and to enable their graphical display. The relationship between 

the coordinates of points on a geometric object is fundamental to geometric design. 

An explicit equation might express the z coordinate in terms of the x and y coordinates: that is, z 

= f(x, y). Such a surface is called a height field. The different treatment of z from that of x and y 

inherently limits shape. For example, a height field cannot contain an overhang or a vertical slope 

(similarly, a planar curve produced by an explicit equation y = f(x) cannot double-back or be 

closed, nor can it parallel the y axis). 

 

Figure 3. Surface and curve inexpressible by an explicit equation. 

There are at least two approaches that treat coordinates symmetrically, thereby resolving the 

difficulty with vertical slopes. One approach is parametric: each of the coordinates is expressed 



according to the geometric dimension of the object. That is, for a one-dimensional curve 

embedded in two-space, x = fx(t) and y = fy(t). For a two-dimensional surface embedded in three-

space, x = fx(s, t), y = fy(s, t), and z = fz(s, t). Parametric curves and surfaces provide a convenient 

mapping from the object to the space within which it is embedded. For example, any three-

dimensional point on the surface may be specified by an (s, t) ordered pair. This forward mapping 

(or parameterization) is useful for display, surface texture, and other applications. 

 

Figure 4. A parametric surface 

The other symmetric approach is implicit: the coordinates are treated as functional arguments 

rather than functional values. In general for surfaces, F(x, y, z) = c, where c is a point in n and F 

maps 3 → n. For most applications, n is 1 and c is a scalar constant. When c is zero, f 

implicitly defines a locus called an implicit surface; that is, the set of points {p  3: f(p) = 0} is the 

implicit surface defined by f. f is called the implicit surface function (also known as a `scalar field,' 

`field function,' or `potential function’). The implicit surface is sometimes called the zero set (or 

zero surface) of f and may be written f−1(0) or Z(f). 

f is typically specified either by 1) discrete samples, usually uniformly spaced within a finite 

volume, 2) mathematical functions, in which one or more equations evaluate the coordinates of p, 

or 3) procedural methods, in which an algorithmic process evaluates p. 

Discrete samples are usually physical measurements such as opacity, density, etc. Related to 

f−1(0) is the isosurface (also called a level set or level surface), which is {p  3: f(p) = c}, where c 



is the isocontour value of the surface. Isosurfaces are popular for scientific visualization (of 

medical, material, or atmospheric data, for example), especially when varying c is of interest. 

If f is a mathematical function, it may contain any mathematical expression. If f is polynomial only, 

it is called algebraic (i.e., it contains a finite number of terms). The resulting surface is called an 

algebraic surface (algebraic surfaces belong to the domain of algebraic geometry, which is the 

study of zeros of polynomial equations, the algebraic representation of figures, and, frequently, 

those properties that remain invariant when the equations undergo transformation). Non-

polynomials are called transcendental; they arise frequently in scientific disciplines and include 

the trigonometric, exponential, logarithmic, and hyperbolic functions. 

If f is an arbitrary procedural method (i.e., a black box function that evaluates p), the geometric 

properties of the surface can be deduced only through numerical evaluation of the function. 

The implicitly defined surface can be bounded (i.e., finite in size), such as a sphere, or 

unbounded, such as a plane. The value of f at a point p is often a measure of proximity between 

p and the surface. The measure is Euclidean if it is ordinary (i.e., physical) distance. For an 

algebraic surface, f measures algebraic distance. 

Those geometric and topological aspects of implicit surfaces that affect practical issues such as 

surface representation and display are discussed in the following section. 

Continuity, Differentiability, and Manifoldness 

In order that normals be defined along an implicit surface, the function f must be continuous and 

differentiable. That is, the first partial derivatives f/x, f/y, f/z must be continuous and not all 

zero, everywhere on the surface. Such a function is known as analytic (or is considered analytic 

in a region that is differentiable). When given as an ordered triplet, the partials define the gradient 

f of the function. The unit-length gradient is usually taken as the surface normal. 



For example, the gradient of the unit sphere, f(x, y, z) = x2+y2+z2−1, is (2x, 2y, 2z). Thus, a point 

on the sphere at (1, 0, 0) has a (unit-length) normal of (1, 0, 0), which points outwards (complying 

with display convention). Negating the implicit function will invert the surface (i.e., its sense of 

inside and outside), with a corresponding reversal of surface normals. 

For a ‘black-box’ or other non-differentiable function, the gradient may be approximated 

numerically using forward differences and some discrete stepsize : 

f(p)  (f(p+x)−f(p), f(p+y)−f(p), f(p+z)−f(p))/, 

where x, y, and z are displacements by  along the respective axes. For small , the error is 

proportional to . If f is computed by central differences: 

f(p)  (f(p+x)−f(p−x), f(p+y)−f(p−y), f(p+z)−f(p−z))/2, 

the error is proportional to 2.  

If the gradient is non-null at a point p, then p is said to be regular (or simple) and f(p) is normal 

(i.e., perpendicular) to the surface at p. If, however, the gradient (or, equivalently, the tangent 

vector) is indeterminate, the point is singular (also called critical or non-regular). The normal at a 

singular point is sometimes given as the average of the normals of surrounding vertices. 

A regular value c of f exists if, for every p  f -1(c), p is a regular point. For example, the cone f = 

−x2+y2+z2 is regular with the exception of a singularity at the origin. Thus, 0 is not a regular value 

of f, but all others are. The detection of singular points for low degree algebraic curves and 

surfaces is described in [Hoffmann 1989]. 

 

Figure 5. The apex of a cone is a singular point. 

left: zero set, right: cross-section (contours added) reveals non-zero values are regular 



If the surface is regular and the second partial derivatives are continuous, then the surface will 

have continuous curvature (i.e., the surface is G2 continuous). Also, if the surface is regular, it is 

manifold. 

 

Figure 6. Normal, tangent, and curvature vectors. 

normal vectors (left) and tangent vectors (middle) are continuous 

curvature (right) is directed inwards along the semi-circle, then instantly becomes null 

The 2-manifold is a fundamental concept from algebraic topology [Mayer 1972] and differential 

topology [Guillemin and Pollack 1974]. It is a surface embedded in 3 such that the infinitesimal 

neighborhood around any point on the surface is topologically equivalent (`locally diffeomorphic') 

to a disk. Intuitively, the surface is `watertight' and contains no holes or dangling edges. Typically, 

the manifold is bounded (or closed). For example, a plane is a manifold but is unbounded and 

thus not watertight in any physical sense. A manifold-with-boundary is a surface locally 

approximated by either a disk or a half-disk. All other surfaces are non-manifold. 

 

Figure 7. Manifold, manifold-with-boundary, and non-manifold. 

Although f is sometimes called an ‘implicit function,’ that term formally refers to the implicit 

definition of one variable in terms of one or more other variables. For example, f(x, y, z) = 0 may 



be rewritten as f(x, y, g(x,y)) = 0. The Implicit Function Theorem gives those conditions under 

which a unique g exists and is C1 continuous [Spivak 1965]. 

From the implicit function theorem it may be shown that for f(p) = 0, where 0 a regular value of f 

and f is continuous, the implicit surface is a two-dimensional manifold [Bruce and Giblin 1992, 

prop. 4.16]. The Jordan-Brouwer Separation Theorem states that such a manifold separates 

space into the surface itself and two connected open sets: an infinite `outside' and a finite ‘inside' 

[Guillemin and Pollack 1974]. 

Consider two examples for which no manifold exists. The first is simply f(p) = 0. Here, f is 

everywhere 0, there is no `inside' nor `outside' and no boundary between the two. The second is 

a degenerate sphere f(x, y, z) = x2+y2+z2. Here, f = (2x, 2y, 2z), which is null at the origin, the 

only point satisfying f; intuitively, the `inside' is degenerate. Whether or not a surface is manifold 

concerns its polygonal representation. 

Polygonal Representation 

For many applications it is useful to approximate an implicit surface with a mesh of triangles or 

polygons (formally, a discrete set of piecewise-linear, semi-disjoint elements). For differentiable f 

this is always possible because all manifold surfaces may be triangulated [Whitney 1957]. 

Although approximate, the mesh is a practical representation for Z(f). [Hoffmann 1993] notes the 

difficulty in obtaining exact mathematical representations (parametric or implicit) for conceptually 

simple surfaces such as the offset surface (a surface a fixed distance from a base surface) and 

the equi-distance surface (a surface lying between two surfaces). There are simple procedural 

descriptions for both of these surfaces, each readily converted to a polygonal mesh. 

Mesh conversion, popularly known as polygonization, usually involves partitioning space into 

convex cells (typically cubes or tetrahedra). A cell is transverse if any of its edges intersects the 



implicit surface (i.e., one edge endpoint evaluates negatively, the other positively). For each 

transverse edge, a surface vertex is computed (by the Intermediate Value Theorem, a point p: 

f(p) = 0 must exist along a transverse edge if f is continuous). The surface vertices belonging to 

the transverse edges of a cell are connected to form one or more polygons (alternatively, patches 

may be produced). The edges of the polygons lie within the faces of the cell. 

The order of vertex connectivity is often stored in a table of polarity configurations of the cell 

corners. For the cube (8 corners) and the tetrahedron (4 corners, i.e., a three-dimensional 

simplex) there are 256 and 16 possibilities, respectively. Any convex cell may be decomposed 

into tetrahedra, thereby simplifying the case analysis. Any (possibly non-planar) n-sided polygon 

produced may be decomposed into n+2 triangles; alternatively, n triangles can radiate from a 

polygon centroid. 

 

Figure 8. Polygonization. 

A review of discrete and continuous polygonization methods is given in [Kalvin 1992]. An analysis 

of implementation complexity, polygon count, and topological and geometric accuracy is given in 

[Ning and Bloomenthal 1993]. Other criteria, such as the number of function evaluations, the 

adaptive distribution of polygons, and visual appearance are discussed in [Schmidt 93]. A review 

of discrete data methods is given in [Schroeder et al. 1996]. 

Software implementations typically utilize exhaustive enumeration [Mäntylä 1988], subdivision 

[Bloomenthal 1988], or numerical continuation [Allgower and Georg 1990]. 



Exhaustive Enumeration 

Exhaustive enumeration operates on a set of samples of f arranged as a regular, typically 

rectilinear lattice known as a scalar grid or voxel array. The samples may be experimental, such 

as CAT and MRI scans, or computed, as in simulations of fluid flow. The lattice is readily 

represented by a three-dimensional memory array, which can be filled by a hardware scanner in 

constant time. 

Once the samples are obtained, each transverse cell is polygonized. Given c1 and c2, lattice 

neighbors of opposite sign, a surface vertex v is usually is computed using linear interpolation: 

v = c1+(1−)c2, where  = f(c2)/(f(c2)−f(c1)) 

This method is popularly known as `marching cubes' and may be optimized for one plane of cells 

at a time [Lorensen and Cline 1987]. Cells may be pre-sorted according to minimum and 

maximum f; should an offset (i.e., isovalue) be applied to f, transverse cells can be quickly 

identified from the sort [Wilhelms and van Gelder 1992; Laszlo 1992]. 

The application of marching cubes algorithms includes electron motion [Tindle 1986], 

computational electromagnetics [Ambrosiano et al. 1994], polypeptide visualization [Fujii et al. 

1992], biomedical visualization [Kalvin 1991], and molecular modeling [Koide et al. 1986; Purvis 

and Culberson 1985]. Rendering and polygonization schemes for irregular lattices, such as 

produced by finite element methods, are discussed in [Itoh and Koyamada 1995]. 

Unlike exhaustive evaluation, subdivision and continuation operate on synthetic functions (i.e., f 

may be algebraic or procedural), typically for the purpose of design [Ricci 1973]. f may be 

evaluated at arbitrary locations, which allows methods such as binary sectioning to compute 

surface vertex locations with arbitrary precision, unlike linear interpolation. These algorithms seek 

to minimize the number of evaluations of f, which may be arbitrarily demanding to evaluate. 



Subdivision 

Subdivision is the recursive division of space into sub-volumes. With the exception of the root cell 

(which completely encloses the object), subdivision is applied only to transverse cells. Surface 

vertices and polygons are produced from the ‘terminal’ cells, which collectively enclose the 

implicit surface. Forms of subdivision include the octree [Meagher 1982], KD-tree and bintree 

[Samet 1990]. 

 

Figure 9. Subdivision enclosing a torus. 

left: octree after four recusions, right: polygons in terminal nodes 

The cube is the only polyhedron that may be subdivided into similarly shaped and oriented sub-

polyhedra (one type of tetrahedron, the Kuhn simplex, may be subdivided into similar sub-

tetrahedra [Moore 1992]). Without simlarity, the sub-volumes become thinner, yielding poorly 

shaped polygons. 

Subdivision requires a priori knowledge of the extent of a surface; this can be computed if f 

consists of primitives, each with an associated range. Subdivision must also determine whether a 

cell is transverse; typically this is achieved by examining f at cell corners. If the corners are of the 

same sign, the surface may nonetheless penetrate the cell; robust and accurate determination of 

transversality is possible using interval analysis [Suffern 1989; Snyder 1992; Duff 1992], Lipschitz 

constants [Von Herzen and Barr 1987; Kalra and Barr 1989], or derivative bounds [Hart 1997]. 



Rather than subdivide a large cell, it is possible to propagate from one small cell to another. This 

is a form of numerical continuation, a class of techniques usually divided into piecewise-linear 

and predictor-corrector [Allgower and Georg 1990]. 

Piecewise-Linear Continuation 

Piecewise-linear principles (see [Coxeter 1934], [Freudenthal 1942]) have been applied to implicit 

surfaces using a tetrahedral cell [Allgower and Schmidt 1985] and a cubic cell [Wyvill et al. 1986]. 

Beginning with a single transverse `seed' cell, new cells are propagated across transverse faces 

until the entire surface is enclosed. 

Because only transverse cells are generated, piecewise-linear continuation requires O(n−2) 

function evaluations, where n is cell size. In comparison, exhaustive enumeration requires O(n−3) 

samples. Compared with subdivision, continuation appears less prone to under-sampling. 

Exhaustive enumeration yields all disjoint (and detectable) surface components. Continuation, 

however, produces a single component for each seed cell; to polygonize all disjoint surface 

components, continuation must be performed for each, using an appropriate seed cell. 

Predictor-Corrector Continuation 

Predictor-corrector methods (similar to `meshing' used in numerical grid generation) apply directly 

to the surface, creating elements (usually triangles or polygons) by joining an initial surface point 

with additional points. New points are computed by displacement from a known point along the 

tangent plane and then corrected (e.g., using Newton iteration) onto the surface [Rheinboldt 

1988]. These methods are problematic for surfaces because surface vertices are not intrinsically 

ordered (unlike a one-dimensional contour), which complicates detection of global overlap. 

Adaptive Polygonization 



Polygonization is a sampling process; if the spacing between samples is large with respect to 

surface curvature, detail is lost. Resolution requirements may also change with viewpoint. Any 

fixed sampling rate may be excessive for relatively flat regions of the surface and insufficient for 

relatively curved regions. If the cell size is inversely proportional to local curvature, the resulting 

adaptive polygonization minimizes polygon count while maintaining geometric accuracy [Hall and 

Warren 1990]. Both subdivision and continuation may be performed adaptively [Bloomenthal 

1988]. Accurate representation of non-differentiable f, however, may require explicit computation 

of its singular points. 

Surface refinement is an adaptive method in which a coarsely polygonized surface is followed by 

subdivision of insufficiently accurate polygons. For example, if the center of a triangle is too 

distant from the surface, the triangle may be split at its center, which is moved to the surface 

[Allgower and Gnutzmann 1991]. Similarly, a triangle may be divided along its edges if the 

divergence between surface normals at the triangle vertices is too great [Velho 1996]. 

 

Figure 10. Adaptively polygonized object. 

Adaptive polygonization is also possible through the use of ‘physically-based particles’ distributed 

along the implicit surface, with particle density locally proportional to surface complexity 

[Figueiredo et al. 1992]. Particle location is determined by various heuristics, including the use of 

the gradient of f [Bloomenthal and Wyvill 1990; Figueiredo and Gomes 1996]. During animation, 



the topology of a particle-based polygonization may be maintained by operating on those critical 

points at which topological change occurs [Stander and Hart 1996]. 

Non-Manifold Polygonization 

Although a manifold-with-boundary may be specified by a continuous function, all points off the 

zero set are of the same sign. Consequently, conventional polygonization fails. 

 

Figure 11. Union, difference, and manifold-with-boundary (zero contours are dashed). 

left to right: min(f1, f2), f1max(f1,f2), abs(f1)−min(0,f2) 

where f1 = ||p−c1||/r1−1 and f2 = ||p−c2||/r2−1 are two circles 

As suggested in [Rossignac and O'Connor 1990], a non-manifold can be implicitly represented by 

extending the definition of f to be the separation between arbitrary regions of space. A 

continuation method using this scheme is given in [Bloomenthal and Ferguson 1995]. 

 

Figure 12. Polygonized non-manifold. 

CSG Polygonization 



The primitives in constructive solid geometry (CSG) may be represented implicitly and combined 

by set-theoretic Boolean operations. These operations may create hard-edged junctions that 

conventional polygonizers cannot accurately approximate. A method presented in [Wyvill and van 

Overveld 1997] computes surface vertices on cell edges in the usual manner, but the CSG state 

at the cell corners determines whether a crease is applied to the resulting polygon. 

 

Figure 13: Polygonized CSG objects. 

courtesy Brian Wyvill and Kees van Overveld 

Relation to Parametric Surfaces 

Both parametric and implicit methods are well developed in computer graphics. A modern 

treatment of parametric surfaces is in [Farin 1993]. Traditionally, computer graphics has favored 

polynomial parametric over implicit surfaces because they are simpler to render and more 

convenient for geometric operations such as computing curvature and controlling position and 

tangency. Parametric surfaces are generally easier to draw, tessellate, subdivide, bound, and 

navigate along [Rockwood 1989]. 



An implicit surface naturally describes an object’s interior, whereas a comparable parametric 

description is usually piecewise. The ability to enclose volume and to represent blends of 

volumes provides a straightforward (although less precise) implicit alternative to fillets, rounds, 

and other ‘free-form’ parametric surfaces that require care in joining so that geometric continuity 

is established along the seams [Charrot and Gregory 1984]. Consequently, animations of organic 

shapes commonly employ implicit surfaces. 

 

Figure 14. A free-form parametric surface. 

Point classification (determining whether a point is inside, outside, or on a surface) is simpler with 

implicit surfaces, depending only on the sign of f. This facilitates the construction of complex 

objects from primitive ones [Ricci 1973], and simplifies collision detection [Sclaroff and Pentland 

1991]. 

Certain shapes may be described exactly in both parametric and implicit form, as demonstrated 

for the unit circle. The three-dimensional case is: 

trigonometric x = (cos()cos(), y = sin(), z = cos()sin(),   [0, ],   [0, 2) 

rational          x = 4st/w, y = 2t(1-s2)/w, z = (1−t2)(1+s2)/w, for w = (1+s2)(1+t2), s,t  [0, 1] 

implicit           f(x, y, z) = x2+y2+z2−1 

[Ricci 1973] observes that the implicit representation is often more compact. 



Points on the parametrically defined sphere are readily found by substitution of  and  into the 

equations for x, y, and z (similarly for s and t). By sweeping (, ) through its domain in 2, points 

along the entire surface are conveniently generated for display, piecewise approximation, etc.. 

This natural conversion from the parametric (two-dimensional) space of a surface to the 

geometric (three-dimensional) space of an object is a fundamental convenience. There is no 

comparable mechanism for implicit surfaces (unless the implicit equation is reduced to two 

explicit equations, as is possible for some low degree algebraic surfaces). 

The surface normal for a regular point on an implicit surface is computed as the unit-length 

gradient; the normal to a parametric surface is usually computed as the cross-product of the 

surface tangents in the two parametric directions. 

The class of algebraic surfaces subsumes that of rational parametric surfaces. Thus, implicit 

surfaces are more likely to be closed under certain operations than their parametric counterparts. 

For example, the offset surface from an implicit surface remains an implicit surface, whereas the 

offset from a parametric surface is, in general, not parametric [Sederberg 1987]. 

Because parametric and implicit forms have complementary advantages, it is useful to convert 

from one form to the other. To calculate the intersection of two parametric surfaces, for example, 

the parametric equation for one surface may be substituted into the implicit form for the other 

[Hoffman 1993]. 

Conversion from parametric to the implicit form is known as implicitization, and may be performed 

on any rational parametric surface (or curve) [Sederberg 1983; Bajaj 1993]. This is accomplished 

by elimination of the parameters in the parametric form. For example, elimination of s and t from 

the rational equations yields the implicit form in x, y, and z [van der Waerden 1950; Kapur and 

Lakshman 1992], [Sederberg 1983], [Hoffmann 1989], and [Hoffmann 1993]. 



Implicitization is not always tractable; although the implicit and parametric representations of a 

curve are of the same degree, the implicit representation of a parametric triangular patch of 

degree n is degree n2 and the implicit representation of a tensor product surface of degree m by n 

is degree 2mn [Sederberg 1987]. The number of terms is O(n2) [Bajaj 1993], so that the 

implicitization of a bicubic patch is degree 18, with 1330 terms [Sederberg 1987]. In some 

common cases the degree and number of terms are significantly reduced [Sederberg and Chen 

1995]. 

The conversion from implicit to parametric form is known as parameterization. Associating a point 

(x, y, z) with its equivalent parametric position (s, t) is known as inversion [Sederberg and Snively 

1987]. Parameterization is not always possible because implicit surfaces defined by certain 

polynomials of fourth and higher degree cannot be parameterized by rational functions [Salmon 

1914]. Conversion is always possible for non-degenerate quadrics and for cubics that have a 

singular point. 

Relation to Solid Modeling and CSG 

Point classification, which is inherently implicit, is fundamental to solid modeling, a geometric 

method that emphasizes the unambiguous calculation of well defined geometric properties (such 

as volume, center of mass, etc.). A solid model consists of a surface and its interior; it may be 

specified or modified by several robust methods. 

The theoretical underpinnings of solid modeling are found in point-set topology: a ‘reasonable’ 

solid is ‘all material,’ i.e., a bounded, closed set of points in 3 that is regular (free from any 

dangling points, edges, or faces). Regularity is ``widely used as a characterization of reasonable 

solids'' [Mäntylä 1988]. A finite, regular point-set is called an r-set [Requicha 1980], and a solid 

model is usually confined to an r-set whose surface is analytic. 



An initial means to specify solids was introduced in [Ricci 1973], which developed a `constructive 

geometry' for the purpose of defining complex shapes derived from operations, including blend, 

upon simple implicit primitives (the operations, known as Comba-Ricci sums, are reviewed in 

[Tavares and Gomes 1989]). A primitive solid is described by P(p) < 0 (convention of sign is not 

generally observed for implicit surfaces). 

The closed-form definition given in [Ricci 1973] was superceded by constructive solid geometry 

(CSG), which is characterized by a `bottom-up' binary tree evaluation. The leaf nodes are usually 

arbitrarily placed and oriented low degree polynomial primitives (viz., the parallelepiped, sphere, 

ellipsoid, cylinder, cone, and torus). The internal nodes represent regularized Boolean set-

theoretic operations (union, intersection, and difference), which are common in computer aided 

design and manufacture. 

Union is given as min(P1, P2); intuitively, if a point is within any sphere it evaluates negatively, 

regardless of the number of surrounding spheres. Intersection is given as max(P1, P2); i.e., if a 

point is outside any sphere, it evaluates positively. Difference is given by max(P1, −P2). Because 

the solid model unambiguously separates inside from outside, it defines a realizable manifold and 

polygonization methods typically succeed. 

min and max are semi-analytic, however, as they are not everywhere differentiable. Analytic 

expressions approximating union and intersection (for n functions) are given in [Ricci 1973] as: 

union (f1, . . ., fn) = (f1−+. . .+fn−)−1/ 

and 

intersect (f1, . . ., fn) = (f1+. . .+fn)1/ 

where  > 0. The limits of these functions (as  approaches zero) are min and max, respectively. 

Forms of union and intersection are also given by R-functions, which are sets of semi-analytic 

functions that partition the real line [Shapiro 1991; Pasko et al. 1995]. 



Figure 15. Set-theoretic difference and intersection of two circles. 

The solid model is usually represented by a plane model and is called a boundary representation, 

or BRep. The plane model, developed by Möbius, is a planar directed graph containing a finite 

number of n-dimensional facets (i.e., faces, edges, and vertices) that represent the boundary of 

an object [Henle 1979]. A computer implementation is the ‘winged-edge’ data structure [Baumgart 

1974]. 

According to planar graph theory (from algebraic topology), a plane model is a realization of a 2-

manifold if it 1) divides a surface such that every edge of a face is identified with one and only 

one other oppositely directed edge of an adjacent face, 2) at each vertex a cycle of faces exist 

such that two consecutive faces share an edge emanating from the vertex, and 3) the division is 

orientable, meaning each face is bounded by consistently oriented edges with all edges used 

once [Mäntylä 1988]. 

To compute the BRep of a CSG model, typically each leaf node of the CSG tree is converted to a 

BRep. Then, in bottom-up order for each internal node, appropriate Euler operators are applied to 

the two child nodes, producing at each internal node an intermediate regularized BRep (i.e., the 

BRep must be closed under all Boolean operations [Mäntylä 1988; Chiyokura 1988]). Regularity 

typically disallows non-manifold objects, although support does exist for non-regular and other 

free-form methods [Rossignac and Requicha 1991]. To maintain a regularized BRep at each 

node, each set operation must support a multitude of geometric intersections, many of which are 

difficult to implement robustly in the presence of numerical errors [Mäntylä 1988]. 

Either an ordered sequence of edges around each vertex or an ordered list of edges around each 

face are sufficient to reproduce an adjacency graph embedded in a two-dimensional manifold 

not 
differentiable 



[Weiler 1986]. In other words, the topologically more complete BRep can be obtained from the 

representationally simpler mesh produced by polygonization. 

Relation to Algebraic Surfaces 

When f is polynomial the corresponding implicit surface is an algebraic surface (also called 

algebraic set). The basis of the polynomial is usually the power basis (i.e, x, x2, x3 ...) but could be 

another, such as the Bernstein (used by Bézier curves and surfaces). For the purpose of 

geometric modeling, coefficients are limited to the reals. The degree of an algebraic expression is 

the maximum degree of its terms. When f is linear (degree 1), it describes a plane. When f is 

quadratic (degree 2), it describes a quadric surface, which is an ellipsoid, sphere, cylinder, cone, 

paraboloid, hyperboloid, or hyperbolic paraboloid, or is degenerate (a plane, line, or point). The 

quadrics may also be expressed in trigonometric form; when exponentiated, the trigonometric 

terms yield a superquadric [Barr 1981]. 

It may be difficult to perform geometric operations, such as surface/surface intersection, on 

algebraic surfaces of degree greater than three because the degree of the resulting surface is 

often very high. 

The animation of algebraic surfaces is discussed in [Saupe and Ruhl 1995]. A general 

development of algebraic surfaces is given in [Sederberg 1985], [Sederberg 1987], and [Bajaj 

1992]. Other salient properties of algebraic surfaces are discussed in [Zariski 1935; Hoffmann 

1989]. 

Algebraic surfaces may also be defined parametrically by three independent equations, one each 

for x, y, and z. Further, the equations may be rational; that is, x = f(s, t) / g(s, t), where f and g are 

polynomials (similarly for y and z). Rational polynomial parametric surfaces are a subset of 

implicit algebraic surfaces; each rational parametric surface may be expressed in implicit form, 

but the converse does not hold [Bajaj 1993]. A theorem by Noether states that a planar algebraic 



curve f(x, y) = 0 has an equivalent rational parametric form if and only if f has a genus of 0. A 

similar theorem for surfaces is provided by Castelnuovo [Zariski 1935]. All non-degenerate 

quadric surfaces in implicit form may be converted to parametric form [Salmon 1914]. 

Algebraic surfaces may define non-manifolds. For example, the Steiner surface 

(x2y2+y2z2+z2x2+xyz = 0) contains the coordinate axes, where it is singular. 

 

Figure 16. The Steiner patch. 

An algebraic surface must consist of a finite number of components, which is not the case for 

transcendental functions. For example, f(x, y) = cos(x)sin(y)−1 = 0 yields zero-contours 

throughout the plane. 

 

 

Figure 17. A transcendental function (zero-contours highlighted in white). 



An algebraic representation for a particular surface is not unique. A plane passing through the 

origin is specified by ax+by+cz, for example, and the same plane is described by a = b = c = 1 

and by a = b = c = 1/3, but only the latter yields a plane normal (a, b, c) of unit length. 

Algebraic surfaces may be interpolated by interpolating the corresponding algebraic equations 

[Bajaj and Ihm 1992]. For example, a torus ((x2+y2+z2+rmajor
2−rminor

2)2−4rmajor
2(x2+z2)) may be 

interpolated to a sphere (x2+y2+z2−r2). 

 

Figure 18. Interpolation of algebraic functions. 

Related to the quadric surface is the `blobby molecule,' a blend of primitive ‘atoms’ (usually 

spheres or ellipsoids) [Blinn 1982]. Each primitive Pi computes a normalized distance ri (usually to 

the center of a sphere or to the foci of an ellipsoid). The molecule is given by  h(ri)−t, where h is 

a blend function and t is some threshold. 



Figure 19. Contribution of a primitive P as a function of distance. 

h is usually monotonic and sigmoidal. The domain rmax of h affects the primitive’s range of 

influence and the shape of h determines the primitive’s radius in isolation and blending 

characteristics. In [Blinn 1982] h is an exponential; in [Nishimura et al. 1985] piecewise quadratics 

produce what are popularly called ‘metaballs’ and in [Wyvill et al. 1986] a sixth degree polynomial 

produces ‘soft objects.’ 

The geometric continuity of h at rmax determines the effect of one atom on its neighbor. For 

example, [Wyvill et al. 1986] gives: 

h(r) = 1−(4/9)r6+(17/)9r4−(22/9)r2 for r  [0, 1], 1 for r < 0, 0 for r > 1, 

where r = d/R, d is distance to the primitive, and R is the range of influence of the primitive. This 

may be factored into: 

(r2−1)2 (9−4r2)/9 

The two roots at r = 1 = rmax imply an order of continuity of 1. That is, if the influence of two atoms 

overlap, the seam between the area of mutual influence and the areas influenced only by one 

atom is G1 continuous. Another function due G.Wyvill is (1−r2)3, which, having three multiple roots 

at r = 1, implies a G2 continuous blend [Bloomenthal 1997, chapter 5]. 

The union of two algebraic surfaces is usually given by the product of the corresponding algebraic 

functions. Intuitively, if f is zero, then any multiple of f, including multiplication by another function, 

is zero. For example, consider two spheres given by f1 = ||p−c1||−r1 and f2 = ||p−c2||−r2, where ci 

and ri are the centers and radii. Each function is negative inside the sphere's radius and positive 

outside. 

rt 

t 

rmax 



The multiplication f1f2 confuses the sense of inside and outside, however. That is, points that are 

within both spheres as well as points beyond both spheres evaluate positively; only points within 

one and only one sphere evaluate negatively. This produces internal boundaries that are difficult 

to polygonize and typically undesirable in geometric design. In contrast, solid modeling operates 

on volumes, rather than surfaces, and does not produce internal boundaries. 

Figure 20. Algebraic (left) and set-theoretic (right) unions (zero set is highlighted in white). 

The complexity of an algebraic surface can be partly understood in terms of intersections with 

curves or surfaces. A generalization of Bezout's Theorem states that an algebraic curve of 

degree m intersects an algebraic surface of degree n in at most mn points (assuming no part of 

the curve is common with the surface), and that the intersection of a surface of degree m with a 

surface of degree n is an algebraic curve of degree mn or less [Zariski 1935]. For example, a line 

may intersect an algebraic surface of degree m no more than m times; two ellipses (each of 

degree 2) may intersect at no more than four points. 

Deformations 

An implicit surface may be defined by a deformation. A deformation D maps each point in three-

space to some new location; that is, p' = D(p). If D is to apply to an implicit surface, the inverse of 

D must be applied to the space within which the implicit surface is embedded; in other words, 

fD(p) = f(D−1(p)), where fD is the deforming implicit function. For example, to scale the unit circle 

by 2, the coordinate system is scaled by ½ so that points that satisfy f become twice as far from 

the origin. 

f1f2 min(f1, f2) 



A tangent vector v and normal vector n of the undeformed surface may be transformed to yield 

the tangent and normal vectors of the deformed surface [Barr 1984]. Specifically, vD = Jv and nD 

 J−1n, where J is the Jacobian of D, given by D(p)/p. 

Deformation includes the twist, bend, and taper operations introduced by [Barr 1984]. In [Crespin 

et al. 1996] twist is applied to implicitly defined swept surfaces. Other deformations include offset 

of a surface in the direction of its normal or in arbitrary directions [Pedersen 1994]; the offset may 

be a fixed amount or may be governed by a displacement map [Sclaroff and Pentland 1991]. 

 

Figure 21. Deformed swept surface. 

courtesy Benoit Crespin, Carole Blanc, and Christophe Schlick 

Patches 

There are two principal means to define algebraic objects more complex than low-order surfaces. 

One is the use of higher order algebraic surfaces, which are difficult to design because the 

relation between shape and polynomial coefficients is not readily perceived. This has prompted 

the use of piecewise algebraic surfaces, also known as semi-algebraic sets or implicit patches. 

Each surface piece is low order and spans a single (usually tetrahedral) cell within a spatial 

partitioning. 

Patch shape is typically specified by a grid of control points that deforms the enclosed space 

according to a Bernstein polynomial (although other bases, such as the Bspline, can be used) 



[Sederberg 1985]. This method is central to free-form deformation, a technique to manipulate 

solid models and algebraic surfaces (and widely applied to other geometric objects, such as 

curves, patches, and polygonal meshes) [Sederberg and Parry 1986]. 

As with parametric patches, the algebraic patches must be carefully joined to maintain geometric 

continuity along their boundaries. Depending on the application, the cells can be recursively 

subdivided to adapt to local curvature while maintaining C1 or C2 continuity across the patch 

boundaries. [Warren 1992] provides a method to generate implicit patches from a polygonal 

mesh. At each mesh location the derivatives of the patches are averaged to improve continuity 

along the seams. 

Algebraic patches provide a compact and highly continuous surface representation; they are 

reviewed in [Bajaj 1993]. 

Procedural Methods 

As observed in [Ricci 1973], f may be procedural, i.e., any arbitrary process that computes a real 

value given a point in space. The process may use mathematical functions, conditionals, tables, 

randomness, etc. The procedurally defined `hypertexture' [Perlin and Hoffert 1989] is an implicit 

surface derived from stochastically varied densities within a volume. Iterative and fractal surfaces 

may also be procedurally implicit. Procedural methods are not generally expressible in closed 

form, however, and so cannot be understood with analytic geometry. Further, their interactive 

specification is not well understood, with few examples [Nelson 1985; Fowler et al. 1992]. 



 

Figure 22. Iteratively computed slice through quadratic Julia sets. 

courtesy John Hart and Greg Turk 

Voxels may be employed as a procedural design method. For example, accumulation modeling 

disperses values along some path, iteratively to neighboring array elements [Smith 1982; 

Williams 1990; Greene 1989]. This can be computationally demanding, but allows the simulation 

of developmental processes. Other uses include smoothing [Galyean and Hughes 1991; 

Bloomenthal 1997, chapter 7; Wilhelms 1997] and volume-based metamorphosis [Hughes 1992; 

Lerios et al. 1995]. 

 

Figure 23. Voxel-based model of tree roots and obstacles. 

courtesy Ned Greene 



As with any sampling process, the Sampling Theorem [see Oppenheim and Schafer 1975] 

requires that each voxel represent a filtered volume (i.e., a weighted average of the neighborhood 

surrounding the sample point); otherwise, aliasing may result [Wang and Kaufman 1994]. 

Skeletal Methods 

The skeleton, a standard CAD representation, may be used as a procedural element of implicit 

design. It typically consists of a hierarchical set of ‘limbs’ that each generate an implicit primitive. 

Each limb may support one or more descendent limbs. The relationship between child and parent 

limbs is usually given as an affine transformation that specifies size and orientation [O'Donnell 

and Olson 1981; Reeves 1990]. 

With modern input and display devices, it is feasible to manipulate and display in real-time 

complex skeletons and associated implicit primitives [Bloomenthal and Wyvill 1990; Witkin and 

Heckbert 1994]. Shapes intermediate to key poses typically rely on rigid body rotation at the 

skeletal joints, as other schemes appear unnatural. 

 

Figure 24. Interpolations of implicit contours generated by skeletons S1 and S2. 

top to bottom: algebraic interpolation, interpolation of segment endpoints, interpolation of 

segment angle 



f may be given as the union of primitives or, for a more smooth result, as a blend. For example, 

given two primitives P1(p) and P2(p), f = B(P1, P2) = 0, where B is some blend function, such as 

1−(1−P1)2−(1−P2)2. Various blends are examined in [Rockwood 1989], [Warren 1989] and 

[Hoffman and Hopcroft 1985]; [Woodwark 1986] provides a survey. 

The sum of the convolution of each skeletal limb produces rounds along convex portions of the 

skeleton and fillets along concave portions, and supports complex branching [Bloomenthal and 

Shoemake 1991] . 

 

Figure 25. A surface defined by convolution. 

Visualization 

Implicit surface definitions may be converted to polygonal meshes and visualized (‘rendered’) with 

general-purpose polygon renderers. Methods not requiring an intermediate surface 

representation include rasterization, ray-tracing, line-drawing, and particle display. 

Incremental scan-line methods (‘rasterization’) may be applied to quadric surfaces [Goldstein and 

Nagel 1971; Levin 1976; Blinn 1982; Mittelman 1983; Davis et al. 1968; Bronsvoort 1990; van 

Kleij 1993]. Rasterization of implicitly defined curves is discussed in [Taubin 1994]. 



Implicit surfaces may be ray-traced directly from f, assuming the intersection of each ray with the 

implicit surface is computable. General methods include a spatial partitioning (such as an octree) 

that reduces the problem to the intersection of a ray with terminal cells of the partitioning [Roth 

1982]. For each terminal cell, assuming there is a positive intersection and a negative intersection 

with the ray, the ray-surface intersection may be computed by binary sectioning, regula falsi, or 

some other technique; for low-degree algebraic surfaces, analytic methods may be used [Roth 

1982]. Performance may be improved by application of interval analysis [Mitchell 1990], with 

specific optimizations reported for metaballs [Nishita and Nakamae 1994]. Algebraic surfaces 

may be ray-traced by symbolic methods that are particularly efficient and accurate [Hanrahan 

1983]. Implicit surfaces generally appear simpler to ray-trace than parametric patches [Kajiya 

1982]. 

 

Figure 26. A ray-traced implicit surface. 

An alternative to shaded imagery is the contour-line drawing, accomplished by intersecting an 

implicit surface with a series of planes, each perpendicular to the line of sight and receding from 

the viewpoint [Ricci 1973]. For each plane the zero-contour is drawn, excepting those parts 

obscured by previously drawn contours. Contour-line drawings are particularly useful for 

engineering applications [Forrest 1979]. Like ray-tracing, the technique may be optimized using a 

spatial partitioning. 



 

Figure 27. A contour line drawing. 

Particle display is a method for rapid visualization of representative points along the implicit 

surface [Bloomenthal and Wyvill 1990]. Particles also serve as control points for design and 

modification [Witkin and Heckbert 1994]. 

 

Figure 28. Particles distributed by mutual repulsion. 

courtesy Paul Heckbert and Andrew Witkin 

Other ad hoc methods, such as the display of a planar ‘slice’ of f, are reviewed in [Nielson 1991; 

Bloomenthal and Wyvill 1990]. 

When solid material is of interest, an entire volume may be rendered using volume visualization, 

which models light attenuation through an optical medium and is generally applied to an array of 

samples of f [Drebin et al. 1988; Upson and Keeler 1988; Sabella 1988; Levoy 1988], with 

variations concerned with performance [Max et al. 1990; Hanrahan 1990; Westover 1989] and 



ray-tracing [Kajiya and Von Herzen 1984]. Some methods employ partial shading of estimated 

surfaces within the volume [Drebin et al. 1988; Gallagher and Nagtegaal 1989]. Volume 

visualization is normally an orthographic projection of a regular, affinely transformed grid; 

alternative methods are considered in [Garrity 1990; Novins et al. 1990]. 

Photorealistic image generation requires considerable computation, encouraging the use of 

efficient structures such as hierarchical detail. Hierarchical detail may be added to implicit 

surfaces by applying minute geometric features to simpler, underlying shapes [Sclaroff and 

Pentland 1991]; this may be implemented as a displacement [Cook 1984; Pedersen 1994], as an 

operation within a procedural definition, or as functional composition from 3 to 3. 

 

Figure 29. Detail as implicit composition (color-mapped to emphasize contours). 

left: a(p) is a vertical gradient; middle: b(a(p)) is a smooth modification to a 

right: f(p) = c(b(a(p))) provides fine detail 

Alternatively, detail may be added to a polygonized implicit surface via texture synthesis [Turk 

1991; Witkin and Kass 1992] or via general texture parameterization, i.e., uv-coordinate 

assignment [Gagalowicz 1985; Turk 1992; Opitz and Pottmann 1994]. A parameterization free of 

singularities does not necessarily exist for a given surface, and this can complicate the creation of 

a realistic texture mapping. A general approach to provide uv-parameterizations for implicit 

surfaces is presented in [Pedersen 1995], which observes that the implicit representation 

overcomes several limitations of patch-based interactive texture painting. 



 

Figure 30. UV-coordinate assignment governed by underlying skeleton. 

left: texture coordinates, right: rendered surface 

Solid texture (see [Perlin 1995; Peachey 1985]) may also be applied to implicit surfaces [Wyvill et 

al. 1987]. Such texture relies on surface position not parameterization, and creates the 

appearance of an object carved from, rather than covered by, a material. 

Other Applications 

The most common techniques for implicit modeling presently include algebraic surfaces, implicit 

patches, CSG, and sums of skeletal primitives. 

Implicit methods are also useful in surface reconstruction from unorganized surface points 

through the use of algebraic sums [Muraki 1991; Bittar et al. 1995], the use of implicitly defined 

distance to planes tangential to the surface points [Hoppe et al. 1992], or the use of algebraic 

patches [Moore and Warren 1991; Bajaj 1992; Bailey et al. 1991]. Techniques to extract an 

implicit surface from laser range data are given in [Bajaj et al. 1995; Curless and Levoy 1996]. 

Other applications include the construction of the medial axis [Bloomenthal and Lim 1999]. 



Outstanding issues related to implicit surface design and visualization include improved 

parameterization and texturing, hardware support for visualization, and improved control of 

shape. 

Implicit surfaces constitute an evolving subject of considerable breadth and depth. This brief 

review cannot fully cover the subject but has, hopefully, provided insight into the properties and 

applications of implicit surfaces. 
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